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Abstract In-memory computing systems have been attracting considerable attention as a
method for servicing high-quality multimedia contents. In-memory computing was intended
to store entire data sets in the main memory of a computer to eliminate the need to access slow
mechanical hard discs and increase the ability to process complex and large volumes of data.
Prior studies have proposed a dual inline memory module (DIMM) tree architecture (DTA) as
a new structure for implementing the in-memory computing system. The DTA can apply a
partitioned DIMM tree policy to efficiently manage memory. However, the partitioned DIMM
tree has several drawbacks, including hardware overhead resulting from additional fields in
both the translation lookaside buffer (TLB) and the page table and the demand for an
additional fast partition area for the fast partition page table (FPPT). To overcome these
drawbacks, this paper proposes an advanced TLB management policy for the partitioned
DIMM tree, DIMM tree TLB and two new partitioned DIMM tree management policies, fast-
FPPT and slow-FPPT. We model the proposed policies using C language and verify them by
special workloads in experiments employing a large-capacity memory system. The experi-
mental results show how the proposed policies influence system performance and confirm that
they overcome problems in the existing DTA. The simulations revealed a similarity between
the performance of systems using the proposed policies and that of the existing DTA model.
However, as the proposed policies demand a considerably lower hardware cost than the
existing DTA model, the proposed policies are more practical.
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1 Introduction

A number of recent studies have focused on systems for servicing multimedia contents. The
storage performance of such systems has proven of particular interest because multimedia files
have recently changed to a high capacity, high definition format [20, 24, 28]. As traditional
disk-based server systems have proven inefficient because of poor disk performance, a number
of related studies [3, 14, 21] have proposed using memory-based storage such as dynamic
random-access memory (DRAM)-based storage. Moreover, some research has suggested
employing in-memory computing technologies to address the increasing need for big-data
management [29, 35]. As in-memory computing stores entire data sets in a computer’s main
memory, it precludes the need to access slow mechanical hard-drive I/O and increases the
ability to process complex and large volumes of data [3].

Advancements in memory technology, a drastic decline in the price of memory, and the
evolution of 64-bit multi-core processors have led to the development of in-memory comput-
ing technology [3]. However, traditional memory interfaces such as the multi-drop bus and
point-to-point links (P2Ps) are not suitable for the in-memory computing platform because of
their signal integrity and access latency. In a multi-drop bus, as the DRAM data rate increases,
the number of dual inline memory modules (DIMMs) supported on the bus decreases because
of a lack of signal integrity. In addition, each fully buffered DIMM (FB-DIMM) based on the
P2P must buffer and repeat received signals, resulting in added latency. Therefore, the number
of DIMMs on a P2P must be limited to avoid degrading throughput [5, 7, 32]. To solve the
drawbacks of traditional memory interface methods and to implement a large-capacity mem-
ory system, DIMM tree architecture (DTA) has been proposed. DTA exponentially increases
the number of DIMMs with each level of latency in the tree (Fig. 1) [32].

Prior studies pertaining to the DTA have addressed improvements in system performance and
the implementation of an actual DTA system. In particular, Therdsteerasukdi et al. [33] suggested
efficient policies for the management of a large-capacity main memory and a method for direct
data transaction between two levels of DIMMs. Such policies are excellent for improving the
performance of the DTA system, but they have several critical problems. Support of these policies
requires modifying the TLB and the page table, resulting in hardware overhead. Furthermore, a
fast partition page table (FPPT) used to implement such policies requires an additional fast
partition area. Therefore, to mitigate the hardware overhead demand in the TLB, page table,
and fast partition area, this paper proposes an advanced TLB management policy, referred to as
DIMM tree TLB (DT-TLB) and new FPPTmanagement policies, fast-FPPTand slow-FPPT [12].

This paper introduces the background of this research in Section 2, describes moti-
vations for the research in Section 3, presents the proposed research methods in Section 4,
explains our experiments and evaluates experimental results in Section 5, and concludes
our study in Section 6.
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2 Background

The scaling capacity of the DRAM system has been the focus of several studies. Vogt [34]
proposed the FB-DIMM to avoid the signal integrity problems experienced on the multi-drop
bus. In their work, the FB-DIMMmemory architecture employs a P2P serial interface between
the memory controller and an intermediate buffer called the advanced memory buffer (AMB).
Ganesh et al. [5] studied how traditional memory controller policies for scheduling and row
buffer management perform on the FB-DIMM memory architecture. Jeddeloh and Keeth [10]
proposed the hybrid memory cube (HMC) to improve DRAM bandwidth and energy effi-
ciency by 3D-stacking DRAM dies on top of a logic die, and Kim et al. [11] proposed a
memory-centric network in which all processor channels are connected to local HMCs and
processor-to-processor communication is routed through local HMCs. However, the limited
scalability of the FB-DIMM resulting from the repeat latency of the AMB calls for more study
that leads to HMC commercialization.

The DTA employs a tree topology for connecting DIMMs. To support the DIMM tree, the
DTA uses a special type of DIMM called a tree-DIMM (T-DIMMs) (Fig. 2), which has two
external channels and one internal channel. External channels connect an upper-level DIMM
to lower-level DIMMs in the DIMM tree. An internal channel drives DRAM ranks in the T-
DIMM [32]. For the external channels, previous studies related to the DTA proposed the use of
a multiband radio-frequency interconnect (MRF-I) to reduce T-DIMM pin overhead and
improve signal integrity [31, 33]. However, because the MRF-I is an amplitude shift keying-
based signal transmission technique and the MRF-I signals have sinusoidal characteristics, the
signals must be converted into digital signals, executed by a parent DIMM MRF-I transceiver
and a child DIMM MRF-I transceiver on the DIMM interface router (DIR) in the T-DIMM.
Then, to access the ranks, a data rate converter changes the data rate and width of the converted
digital signals. To process a received command, the T-DIMM must be able to choose among
aborting the received command, executing that command, or forwarding it to lower-level T-
DIMMs. Such operations are run by the router in the DIR (Fig. 2) [13].

Earlier research proposed a DTA using a partitioned DIMM tree policy for efficient
memory management [33]. In the partitioned DIMM tree policy, T-DIMMs are separated into
a fast partition composed of the T-DIMMs in the fastest level(s) of the DIMM tree and a slow
partition composed of the T-DIMMs in the remaining level(s) (Fig. 3). The relationship
between the two partitions is similar to that between the main memory and the hard disk
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[30]. The fast partition acts as a cache for pages in the slow partition, which is used as the main
memory. In addition, Therdsteerasukdi et al. [33] proposed a direct DIMM-to-DIMM transfer
to reduce contention in the memory channel caused by the transfer of pages between the fast
and slow partitions. The partitioned DIMM tree requires an FPPT that monitors the pages in
the fast partition. The FPPT, whose management is similar to that of a traditional page table, is
a set-associative structure to which some part of the fast or slow partition is assigned [12].

Figure 4 illustrates a four-way FPPT in the DTA using a 39-bit physical address. Access to
the main memory initially requires access to the FPPT using the tag and the index of the slow
partition address (physical address) to check for a hit or a miss in a fast partition. If the result is
a hit, the fast partition page number is index × number of ways + way number, which is used to
access the fast partition. However, if the result is a miss, the slow partition page must be
uploaded into the corresponding fast partition page. If the fast partition set is already full, one
of the entries in the set must be replaced by the page replacement policy [30, 33].

Recently, several studies related to the TLB have been devoted to reducing power con-
sumption and improving performance. Such studies have influenced the design of the pro-
posed DT-TLB in this paper. In one study, Sembrant et al. [27] proposed a tagless cache (TLC)
that reduces power consumption. In their study, each TLB entry of the TLC has a collection of
fields containing cache-line location information for all cache lines belonging to that page,
called a cache-line location table (CLT). Each entry in the CLT contains a valid bit indicating
the presence of the corresponding cache line and a way number identifying its location.
Sembrant et al. [26] presented the direct-to-data (D2D) cache that locates data across the
entire cache hierarchy with a single lookup. Each entry of the proposed DT-TLB is similar to
that of the CLT in the TLC and the D2D cache. However, while each CLT entry has
information about its corresponding cache line, each DT-TLB entry contains information
about its corresponding page.

3 Motivation

The partitioned DIMM tree policy is an efficient method of improving system performance.
However, it contains the following problems that result from use of the FPPT:

1) Penalties of the modified TLB and page table: Access to the main memory in the DTA
always requires access to the FPPT to check the hit or miss in a fast partition after access
of a page table for virtual to physical address translation. To solve this problem,
Therdsteerasukdi et al. [33] proposed modifying the TLB and the page table. They added
a flag bit and a field to each modified TLB and page table entry to specify whether the
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Fig. 3 Example of the fast and slow partitions in the DIMM tree architecture
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current page existed in the fast partition and to store the fast partition page number,
respectively (Fig. 5). However, these modifications increased hardware costs. For exam-
ple, if the DTA has a 16-GB fast partition and a 4-KB page size, each TLB entry and each
page table entry must have additional one- and 22-bit fields for the flag and the fast
partition page number, respectively. These additional fields cause substantial hardware
overhead. To overcome these problems, this paper proposes DT-TLB, an advanced TLB
management policy for the partitioned DIMM tree that does not modify the page table.

2) Demand for an additional fast partition area: The FPPT requires an additional fast
partition area (Fig. 6). For example, if the DTA has a 16-GB fast partition, a 4-KB page
size, and a 14-bit FPPT entry size (i.e., 1 bit for valid, 1 bit for dirty, 1 bit for pending
replacement, 7 bits for tag, and 4 bits for LRU) [33], 222× 14 bits for the FPPT are
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required in the fast partition in addition to the above 16 GB. Thus, this paper proposes
new FPPT management policies, fast-FPPT and slow-FPPT, and verifies that their
performance without the additional fast partition area is similar to that of the existing
FPPT management policy.

4 Proposed methods

4.1 DT-TLB

To overcome the drawbacks of the TLB and page table of the existing DTA, this paper
proposes a new TLB referred to as DT-TLB, which is similar to a traditional TLB [2, 22] but
has an added location-flag (L-flag) bit that indicates whether the current page exists in the fast
or slow partition (Fig. 7). If the L-flag is one, the current page exists in the fast partition, and
the page number field in the DT-TLB entry has a fast partition page number; and if the L-flag
is zero, the current page exists in the slow partition, and the page number field has a slow
partition page number. The fast partition page number is assigned by the fast partition
page number assign block in the DTA memory controller [9], which determines the
fast partition page number from the slow partition address and the hit FPPT entry
information, shown in Fig. 4.

Like the traditional TLB, the proposed DT-TLB acts as a cache of the page table that
rapidly translates a virtual address into a physical address. However, it requires management of
the L-flag and the page number field. Therefore, we organize the management of the DT-TLB
as follows. When a DT-TLB miss occurs, uploading the corresponding page number into the
DT-TLB requires accessing the page table. Then, from the index and tag of the uploaded page
number, the system must check the FPPT. If the FPPT access hits, that is, the page exists in the
fast partition, the L-flag of the TLB entry becomes one (Fig. 8a); otherwise, it is zero (Fig. 8b).
Also, the system updates the page number field of the current DT-TLB entry as either a fast or
slow partition page number according to the L-flag.

When a last-level cache (LLC) miss occurs, the cache line must be uploaded from either the
fast or slow partition. The selection of the partition accessed is determined by the results of the
DT-TLB check and update in the previous step (Fig. 8). If the L-flag of the corresponding DT-
TLB entry is one, the system accesses the fast partition without checking the FPPT (Fig. 9a).
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Fig. 6 The FPPT management
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However, if it is zero, the system uploads the page from the slow to fast partition, which results
in updates to the FPPT and the DT-TLB entry (Fig. 9b).

If the fast partition is full, one page is evicted and a new page uploaded by the page
replacement policy. When a page is evicted from the fast partition, its corresponding DT-TLB
entry must also be updated. However, because the FPPT has no information with which to
track the DT-TLB entry that corresponds to the evicted page, the system must search for an
appropriate DT-TLB entry by using the fast partition page number of the evicted page
(Fig. 10a). Page upload from the slow to fast partition follows page eviction. To offset the
performance overhead resulting from DT-TLB search and update, page eviction and upload
and DT-TLB search and update can occur simultaneously (Fig. 10).

The proposed DTA using DT-TLB reduces hardware overhead resulting from the modifica-
tion of both the TLB and page table in the existing DTA. For example, if each fast partition page
number is 22 bits long and a two-level TLB hierarchy has 576 entries, the TLB of the existing
DTA requires an additional 576×23 bits; the DT-TLB, by contrast, requires only an additional
576×1 bits. In addition, if a virtual page number is 27 bits long, the page table of the existing
DTA requires an additional 227 ×23 bits; however, because theDT-TLB uses the traditional page
table without modification, the proposed DTA does not require any additional bits (Fig. 11).

4.2 Fast-FPPT and slow-FPPT

To address the additional fast partition area problem identified in Section 3, this paper proposes
two policies, fast-FPPT and slow-FPPT. The fast-FPPT allocates a small part of one way of the
fast partition to the FPPT area (Fig. 12a). Because the fast-FPPT resides in the original fast
partition (16 GB in the example presented in Section 3), it does not require an additional fast
partition area, thus reducing hardware costs. However, the proposed fast-FPPT can lead to the
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more frequent replacement of pages in the fast partition. For example, if the FPPT occupies
1024 pages of the fast partition of way 0 and it is four-way set-associative, the fast partition
page sets from 0 to 1023 can use just three of the ways. As a result, the pages of the sets from 0
to 1023 can be replaced more frequently than those of the other sets. However, because the sets
used by the FPPT comprise a relatively small part of the fast partition in multimedia server
systems and the other sets can still use all four ways, its negative effect is negligible.

In a similar way, the slow-FPPT allocates a small part of the slow partition to the FPPT area
(Fig. 12b), so it does not require an additional fast partition area either. This policy, however,
could lead to inefficient performance because the access time of the slow partition is greater
than that of the fast partition. However, because the FPPT in the slow partition would seldom
be accessed, its negative influence on system performance is minimized. After all, the hit-rate
of TLBs is generally very high [2], and most requests are processed by the L-flag of the DT-
TLB without accessing the FPPT in the slow partition.

In summary, although the fast- and slow-FPPTs may negatively reduce performance, they
reduce hardware costs. This negative influence, however, is expected to be negligible. Thus, to
analyze the influence of the two policies on system performance, this paper models and
simulates both the fast- and slow-FPPTs with the DT-TLB.
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5 Experiments and results

5.1 Workloads and modeling

To ensure accurate operation of the proposed DT-TLB and to evaluate the effect of the
proposed fast- and slow-FPPTs on system performance, this paper conducted several exper-
iments. For experiments on a large-capacity main memory system, we prepared 14 workloads
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that we extracted from the SPEC OMP2012 benchmark by the pin tool [15, 18, 25]. Each
workload had ten billion 48-bit virtual addresses generated by eight threads in a 64-bit
operating system (OS). In addition, according to the locality of the extracted addresses, we
classified the workloads into high, middle, and low memory-intensive workloads (Table 1).
Workload_Set_1 consisted of five high memory-intensive workloads, and Workload_Set_2
had five middle memory-intensive workloads. The study did not use the four low memory-
intensive workloads for the simulations because the number of main memory accesses was
insufficient for verifying the performance of the DTA.

To verify the proposed DT-TLB operation and to predict the performance of the fast- and
slow-FPPTs, we separately modeled the DTA systems using the fast- and slow-FPPTs with the
DT-TLB through the C programming language. The DTA systems for the modeling were
aimed at a high-end server computer system that supports high-quality multimedia content.
Figure 13 shows the system architecture for the modeling. The system consisted of five
processors, each containing a two-level DT-TLB hierarchy with a two-level cache hierarchy.
The level 3 (L3) cache, external to the processors, was used as a shared cache. We modeled the
two-level DT-TLBs and caches in the processors to be exclusive, and the relationship between
the internal two-level caches and the L3 cache inclusive [36]. The size of the T-DIMM was
4 GB, and the DIMM tree had a branch factor and depth of four. Accordingly, the fast partition,
which consisted of level 2 T-DIMMs, was 16 GB, and the two-level slow partition, which
consisted of level 3 and 4 T-DIMMs, was 320 GB. The fast partition was four-way set-
associative. This paper used a pseudo least recently used (PLRU) algorithm as a replacement
policy for the DT-TLBs, the caches, and the FPPT, but overheads caused by implementing a
particular policy such as adding PLRU bits and updating PLRU bits were excluded from the
simulations. The PLRU was just one option; various replacement algorithms could be
employed such as random or round-robin. Al-Zoubi et al. [1] revealed no common wisdom
about the best algorithm to use. Because the slow partition used as the main memory was
320 GB, the physical address length was at least 39 bits. Because of the difficulty of generating
a real physical address, we used the 39 least significant bits of the 48-bit virtual address as the
physical address in the simulation. The upper nine bits of the virtual address are not suitable for
the physical address because they are mostly used for the sign-extended field or address space
ID [4, 6]. To compare the performance of the existing FPPT with that of the proposed DTAs,
we also modeled the existing FPPT with the proposed DT-TLB. The existing FPPT had an
additional fast partition area for the FPPT, and it employed the proposed DT-TLB instead of

Table 1 Workload description

Workload Set Workloads from the SPEC
OMP2012 Benchmark

Number of
addresses

Description

Workload_Set_1 351.bwaves, 363.swim, 360.ilbdc
370.mgrid331, 372.smithwa,

Each benchmark has
10 billion addresses.

(A total of 50 billions)

High memory-intensive
workloads

Workload_Set_2 357.bt331, 359.botsspar, 362.fma3d,
367.imagick, 376.kdtree

Each benchmark has
10 billion addresses.

(A total of 50 billions)

Middle memory-intensive
workloads

Not used 350.md, 352.nab,
358.botsalgn, 371.applu331

Each benchmark has 10
billion addresses.

(A total of 40 billions)

Low memory-intensive
workloads
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www.manaraa.com

the TLB and the page table used for the existing DTA because the experiments were aimed at
performance comparison of the existing FPPT and proposed FPPTs.
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Fig. 13 System architecture using the proposed DTA

Table 2 Simulation parameters

Parameter Configuration

Level 1 DT-TLB 8 ways, 64 entries,

1-clock-cycle latency

Level 2 DT-TLB 32 ways, 512 entries,

5-clock-cycle latency

Level 1 cache 8 ways, 1024 entries,

5-clock-cycle latency

Level 2 cache 16 ways, 8192 entries,

12-clock-cycle latency

Level 3 cache 32 ways, 524,288 entries,

30-clock-cycle latency

DIMM to DIMM switch time 1-clock-cycle latency

Fast partition Level 2 T-DIMMs 16 GB,
Read and write: 200-clock-cycle latency

Slow partition Level 3 T-DIMMs 64 GB,
Read: 200-clock-cycle latency + 2 DIMM to DIMM switch times
Write: 200-clock-cycle latency + 1 DIMM to DIMM switch time

Level 4 T-DIMMs 256 GB,
Read: 200-clock-cycle latency + 4 DIMM to DIMM switch times
Write: 200-clock-cycle latency + 2 DIMM to DIMM switch times
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We configured the parameters of the simulation similar to those of previous studies
(Table 2) [4, 8, 19, 23, 27]. Every clock cycle latency means access time, except the DIMM
to DIMM switch time, but the DIMM to DIMM switch time in Table 2 is the time delay for
forwarding a command between two levels of T-DIMMs [13].

5.2 Simulation and results

We executed Workload_Set_1 and Workload_Set_2 in Table 1 in each of the three modeled
systems and compared the simulation results. Each system was able to simultaneously run five
workloads in the workload set using five processors. The L3 cache and the FPPTwere shared
by five processors, and a mutex function [16, 17] was used for processor synchronization; the
processor scheduling depended on the OS executing the simulation. Using this multi-thread-
based simulation, we obtained the simulation conditions of real systems such as the natural
contentions of shared resources and a large main memory load. Then we counted the hits and
misses of the TLBs, the caches, and the FPPT by processing all of the requests of each
workload in the modeled systems and further calculated the total clock cycles for accessing the
FPPT and processing all the requests (Fig. 14). Each system processed a total of 50 billion
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Fig. 14 Simulations of the existing FPPT, the fast-FPPT, and the slow-FPPT: a for Workload_Set_1 and b for
Workload_Set_2
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requests because Workload_Set_1 andWorkload_Set_2 each consisted of five workloads, each
with ten billion requests. Figures 15, 16, 17, 18 and 19 show the simulation results of the
existing FPPT with the DT-TLB, the fast-FPPT with DT-TLB, and the slow-FPPT with DT-
TLB models. We analyzed the factors affecting system performance, such as number of TLB
misses, number of cache misses, and number of FPPT misses. We also compare the system
performance of the three models using the total number of clock cycles for the FPPT accesses
and the number of clock cycles for processing the ten billion requests in each workload.

Figure 15 shows the counts of the DT-TLB misses for processing the ten billion requests in
each workload. The DT-TLB misses significantly impacted the performance of the three
FPPTs using the DT-TLB because when a DT-TLB miss occurred, the FPPT had to be
checked before the DT-TLB was updated after the page table walk (Fig. 8). Particularly, the
numbers of misses of the 376.kdtree and 359.botsspar in Workload_Set_2, which had low
spatial and temporal locality, were larger than those of the other workloads. Figure 16 shows
the counts of the LLC misses during the execution of the two workload sets. Because
Workload_Set_1 contained high memory-intensive workloads overall, its miss counts were
higher than those of Workload_Set_2.

Figure 17 shows the counts of the FPPT misses in processing the workloads. An FPPT miss
was determined by the L-flag value of the corresponding DT-TLB entry after an LLC miss
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(Figs. 8 and 9). The counts of FPPT misses in the three models were similar at high memory-
intensive workloads (Fig. 17a), but the counts of the FPPT misses in the fast-FPPTwere higher
than those in the other models at 362.fma3d, 376.kdtree, 367.imagick, and 359.botsspar of
Workload_Set_2, which were middle memory-intensive and had a high locality of memory
references (Fig. 17b). These results show that the hit rate of the fast-FPPT was lower than the
rates of the other models at workloads with a high locality of memory references because the
fast-FPPT can use fewer fast partition pages than the other two models.

Figure 18 shows the numbers of clock cycles required for accessing the FPPT during the
processing of the workload requests. These results were influenced by the counts of DT-TLB
misses and FPPT misses at the workloads. Particularly, FPPT misses tended to increase the
number of clock cycles for FPPT accesses because they required additional FPPT accesses in
order to update the fast partition. Overall, the numbers of clock cycles of the slow-FPPTwere
slightly larger than those of the other models because the slow-FPPT required more clock
cycles for each FPPT access than the other models. The difference, however, was negligible,
and the results of all the models were almost the same.

Figure 19 shows the total numbers of clock cycles required for processing the ten billion
requests in each workload. The results of most workloads were similar among the existing
FPPT, the fast-FPPT, and the slow-FPPT. The total numbers of clock cycles at 359.botsspar
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were larger than those at other workloads because 359.botsspar required the largest number of
the DT-TLB misses (Fig. 15). DT-TLB misses led to FPPT checks demanding accesses to
either the fast or slow partition, so they had a strong negative influence on the overall
performance of the DTA. For a similar reason, the total numbers of clock cycles at 376.kdtree
were the second largest because 376.kdtree showed the second largest number of DT-TLB
misses and the largest number of FPPT misses (Fig. 17). The overall analysis showed that
system performance was primarily influenced by the DT-TLB misses, the FPPT misses, and
the FPPT accesses. Because the existing FPPT, the fast-FPPT, and the slow-FPPT showed
similar results with respect to these factors, as predicted in Section 4.2, the difference in their
performance was negligible. Thus, although the proposed fast- and slow-FPPTs require lower
hardware costs for the fast partition than the existing FPPT, their performance is virtually the
same as that of the existing FPPT.

6 Conclusion

This study explored memory system architectures for a high-performance multimedia server
system. The proposed DT-TLB and its detailed management policies reduced the hardware
overhead of the TLB and the page table in the existing DTA. To overcome the need to add a
fast partition area for the FPPT, this paper proposed new FPPT management policies, referred
to as the fast-FPPT and the slow-FPPT. To verify the proposed policies, this paper modeled the
existing FPPT, the fast-FPPT, and the slow-FPPT with DT-TLB and conducted simulations
using special workloads designed for testing a large main memory system. The design of the
simulation framework was based on a multi-processor system such as a high-end multimedia
server. The simulation results demonstrated that the performance of the proposed FPPTs was
similar to that of the existing FPPT, but the proposed FPPTs significantly reduced hardware
costs. Through this study, we confirmed that by removing the need for additional hardware
resources, the proposed DT-TLB and FPPTs could overcome the problems of the existing
DTA. As a study for an in-memory computing-based multimedia server, this paper studied
new hardware architectures for implementing actual DTA systems. It is expected to contribute
to the implementation of a high-performance multimedia server for supporting high-quality
multimedia content. Future work will involve a study of the detailed hardware architecture and
power optimization of the DIMM tree and T-DIMM for actual implementation of the DIMM
tree architecture.
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